Skip to content

e-footprint quickstart

This notebook provides an example scenario that you can use to get familiar with the Python API of efootprint: the daily video consumption of all French households on a big streaming platform.

You will get to describe:

  • the infrastructure involved (servers with auto-scaling settings, storage and network)
  • the user journey involving 2 steps (Streaming, Upload)
  • the usage pattern and the device population that executes it (the laptops of all French households)

Import the packages

⚠ If this steps fails, remember to run ipython kernel install --user --name=efootprint-kernel inside your python virtual environement (initializable with poetry install) to be able to select efootprint-kernel as the jupyter kernel.

# If this hasn’t been done in virtualenv (useful for Google colab notebook)
!pip install efootprint

pip install logs...

import os

from efootprint.abstract_modeling_classes.source_objects import SourceValue, Sources, SourceObject
from efootprint.abstract_modeling_classes.explainable_objects import EmptyExplainableObject
from efootprint.core.usage.usage_journey import UsageJourney
from efootprint.core.usage.usage_journey_step import UsageJourneyStep
from efootprint.core.usage.job import Job
from efootprint.core.hardware.server import Server, ServerTypes
from efootprint.core.hardware.storage import Storage
from efootprint.core.usage.usage_pattern import UsagePattern
from efootprint.core.hardware.network import Network
from efootprint.core.hardware.device import Device
from efootprint.core.system import System
from efootprint.constants.countries import Countries
from efootprint.constants.units import u

Define the infrastructure

Creating objects manually

An e-footprint object has a name and attributes describing its technical and environmental characteristics:

storage = Storage(
    "SSD storage",
    carbon_footprint_fabrication_per_storage_capacity=SourceValue(160 * u.kg / u.TB, Sources.STORAGE_EMBODIED_CARBON_STUDY),
    power_per_storage_capacity=SourceValue(1.3 * u.W / u.TB, Sources.STORAGE_EMBODIED_CARBON_STUDY),
    lifespan=SourceValue(6 * u.years, Sources.HYPOTHESIS),
    idle_power=SourceValue(0 * u.W, Sources.HYPOTHESIS),
    storage_capacity=SourceValue(1 * u.TB, Sources.STORAGE_EMBODIED_CARBON_STUDY),
    data_replication_factor=SourceValue(3 * u.dimensionless, Sources.HYPOTHESIS),
    data_storage_duration = SourceValue(2 * u.year, Sources.HYPOTHESIS),
    base_storage_need = SourceValue(100 * u.TB, Sources.HYPOTHESIS),
    fixed_nb_of_instances = EmptyExplainableObject()
    )

Creating objects from default values

All e-footprint classes also implement default values and a from_defaults method that allows for using a set a pre-defined default attributes and specifying the ones we want to specify through keyword arguments.

Storage.default_values()
{'carbon_footprint_fabrication_per_storage_capacity': 160.0 kilogram / terabyte,
 'power_per_storage_capacity': 1.3 watt / terabyte,
 'lifespan': 6 year,
 'idle_power': 0 watt,
 'storage_capacity': 1 terabyte,
 'data_replication_factor': 3 dimensionless,
 'base_storage_need': 0 terabyte,
 'data_storage_duration': 5 year}
# Creating a storage object from defaults while specifying storage capacity using keyword arguments
print(Storage.from_defaults("2 TB SSD storage", storage_capacity=SourceValue(2 * u.TB)))
Storage id-38c287-2-TB-SSD-storage

name: 2 TB SSD storage
lifespan: 6 year
fraction_of_usage_time: 1 dimensionless
carbon_footprint_fabrication_per_storage_capacity: 160.0 kilogram / terabyte
power_per_storage_capacity: 1.3 watt / terabyte
idle_power: 0 watt
storage_capacity: 2 terabyte
data_replication_factor: 3 dimensionless
data_storage_duration: 5 year
base_storage_need: 0 terabyte
fixed_nb_of_instances: no value

calculated_attributes:
  carbon_footprint_fabrication: 0 kilogram
  power: 0 watt
  storage_delta: no value
  full_cumulative_storage_need: no value
  raw_nb_of_instances: no value
  nb_of_instances: no value
  nb_of_active_instances: no value
  instances_fabrication_footprint: no value
  instances_energy: no value
  energy_footprint: no value

We can see from the above print that e-footprint objects have calculated attributes that are setup as empty and then computed by e-footprint when associated with a usage. More information on e-footprint objects’ calculated_attributes can be found in the object reference section of the e-footprint documentation.

Creating objects from archetypes

Some e-footprint objects (Storage, Network and Hardware) also have archetypes that have their own set of default values:

Storage.archetypes()
[<bound method Storage.ssd of <class 'efootprint.core.hardware.storage.Storage'>>,
 <bound method Storage.hdd of <class 'efootprint.core.hardware.storage.Storage'>>]
print(Storage.hdd())
Storage id-29d83d-Default-HDD-storage

name: Default HDD storage
lifespan: 4 year
fraction_of_usage_time: 1 dimensionless
carbon_footprint_fabrication_per_storage_capacity: 20.0 kilogram / terabyte
power_per_storage_capacity: 4.2 watt / terabyte
idle_power: 0 watt
storage_capacity: 1 terabyte
data_replication_factor: 3 dimensionless
data_storage_duration: 5 year
base_storage_need: 0 terabyte
fixed_nb_of_instances: no value

calculated_attributes:
  carbon_footprint_fabrication: 0 kilogram
  power: 0 watt
  storage_delta: no value
  full_cumulative_storage_need: no value
  raw_nb_of_instances: no value
  nb_of_instances: no value
  nb_of_active_instances: no value
  instances_fabrication_footprint: no value
  instances_energy: no value
  energy_footprint: no value

Apart from environmental and technical attributes, e-footprint objects can link to other e-footprint objects. For example, server objects have a storage attribute:

server = Server.from_defaults(
    "server",
    server_type=ServerTypes.autoscaling(),
    power_usage_effectiveness=SourceValue(1.2 * u.dimensionless, Sources.HYPOTHESIS),
    average_carbon_intensity=SourceValue(100 * u.g / u.kWh, Sources.HYPOTHESIS),
    server_utilization_rate=SourceValue(0.9 * u.dimensionless, Sources.HYPOTHESIS),
    base_ram_consumption=SourceValue(300 * u.MB, Sources.HYPOTHESIS),
    base_compute_consumption=SourceValue(2 * u.cpu_core, Sources.HYPOTHESIS),
    storage=storage
)

print(server)
Server id-7f0fb9-server

name: server
carbon_footprint_fabrication: 600 kilogram
power: 300 watt
lifespan: 6 year
fraction_of_usage_time: 1 dimensionless
server_type: autoscaling
idle_power: 50 watt
ram: 128 gigabyte
compute: 24 cpu_core
power_usage_effectiveness: 1.2 dimensionless
average_carbon_intensity: 100.0 gram / kilowatt_hour
server_utilization_rate: 0.9 dimensionless
base_ram_consumption: 300 megabyte
base_compute_consumption: 2 cpu_core
fixed_nb_of_instances: no value
storage: id-7715a6-SSD-storage

calculated_attributes:
  hour_by_hour_ram_need: no value
  hour_by_hour_compute_need: no value
  occupied_ram_per_instance: no value
  occupied_compute_per_instance: no value
  available_ram_per_instance: no value
  available_compute_per_instance: no value
  raw_nb_of_instances: no value
  nb_of_instances: no value
  instances_fabrication_footprint: no value
  instances_energy: no value
  energy_footprint: no value

Creating objects from builders connected to external data sources

Of course only relying on a single set of default values for creating our servers won’t get us far. That’s why e-footprint provides a builder class that connects to Boavizta’s API to allow for the creation of servers from a cloud provider and an instance type.

from efootprint.builders.hardware.boavizta_cloud_server import BoaviztaCloudServer

# Some attributes can only take specific values
for attribute, attribute_list_value in BoaviztaCloudServer.list_values().items():
    print(f"Possible values for {attribute}: {attribute_list_value}")
Possible values for server_type: [autoscaling, on-premise, serverless]
Possible values for provider: [aws, azure, scaleway]
# Moreover, some attributes depend on another attribute for their values
for attribute, attribute_conditional_dict in BoaviztaCloudServer.conditional_list_values().items():
    condition_attribute = attribute_conditional_dict['depends_on']
    print(f"Possible values for {attribute} depend on {condition_attribute}:\n")
    for condition_value, possible_values in attribute_conditional_dict["conditional_list_values"].items():
        if len(possible_values) > 10:
            values_to_print = possible_values[:5] + ["etc."]
        else:
            values_to_print = possible_values
        print(f"    Possible values when {condition_attribute} is {condition_value}: {values_to_print}")
    print("\n")
Possible values for fixed_nb_of_instances depend on server_type:

    Possible values when server_type is autoscaling: [no value]
    Possible values when server_type is serverless: [no value]


Possible values for instance_type depend on provider:

    Possible values when provider is aws: [a1.medium, a1.large, a1.xlarge, a1.2xlarge, a1.4xlarge, 'etc.']
    Possible values when provider is azure: [d2ads_v5, d4ads_v5, d8ads_v5, d16ads_v5, d32ads_v5, 'etc.']
    Possible values when provider is scaleway: [coparm1-16c-64g, coparm1-2c-8g, coparm1-32c-128g, coparm1-4c-16g, coparm1-8c-32g, 'etc.']
# BoaviztaCloudServer still has quite a lot of default values but ones that are much easier to make hypothesis on, 
# like lifespan, server utilisation rate or power usage effectiveness
BoaviztaCloudServer.default_values()
{'provider': scaleway,
 'instance_type': dev1-s,
 'server_type': autoscaling,
 'average_carbon_intensity': 0.23 kilogram / kilowatt_hour,
 'lifespan': 6 year,
 'idle_power': 0 watt,
 'power_usage_effectiveness': 1.2 dimensionless,
 'server_utilization_rate': 0.9 dimensionless,
 'base_ram_consumption': 0 gigabyte,
 'base_compute_consumption': 0 cpu_core,
 'fixed_nb_of_instances': no value}
# The most difficult environmental and technical attributes are retrieved from a call to BoaviztAPI:
print(BoaviztaCloudServer.from_defaults("Default Boavizta cloud server", storage=Storage.ssd(storage_capacity=SourceValue(32 * u.GB))))
BoaviztaCloudServer id-1312f4-Default-Boavizta-cloud-server

name: Default Boavizta cloud server
lifespan: 6 year
fraction_of_usage_time: 1 dimensionless
server_type: autoscaling
idle_power: 0 watt
power_usage_effectiveness: 1.2 dimensionless
average_carbon_intensity: 0.23 kilogram / kilowatt_hour
server_utilization_rate: 0.9 dimensionless
base_ram_consumption: 0 gigabyte
base_compute_consumption: 0 cpu_core
fixed_nb_of_instances: no value
storage: id-6aa8d6-Default-SSD-storage
provider: scaleway
instance_type: dev1-s

calculated_attributes:
  api_call_response: no value
  carbon_footprint_fabrication: 0 kilogram
  power: 0 watt
  ram: 0 gigabyte
  compute: 0 cpu_core
  hour_by_hour_ram_need: no value
  hour_by_hour_compute_need: no value
  occupied_ram_per_instance: no value
  occupied_compute_per_instance: no value
  available_ram_per_instance: no value
  available_compute_per_instance: no value
  raw_nb_of_instances: no value
  nb_of_instances: no value
  instances_fabrication_footprint: no value
  instances_energy: no value
  energy_footprint: no value

[Optional] Install services on your server

Manually creating job objects can get tricky because you have to specify how much RAM and compute the job uses on the server it runs on during its duration. That’s why e-footprint allows for the installation of services on servers, that will give access to higher-level job classes that compute these very technical attributes from simpler ones. For example, let’s install a video streaming service on our server:

Video streaming service

from efootprint.builders.services.video_streaming import VideoStreaming

VideoStreaming.default_values()
{'base_ram_consumption': 2 gigabyte,
 'bits_per_pixel': 0.1 dimensionless,
 'static_delivery_cpu_cost': 4.0 cpu_core * second / gigabyte,
 'ram_buffer_per_user': 50 megabyte}
video_streaming_service = VideoStreaming.from_defaults("Video streaming service", server=server)
2025-02-19 11:15:46,671 - INFO - Computing calculated attributes for VideoStreaming Video streaming service
# All services have a list of compatible job types, let’s check out the ones for video streaming:
VideoStreaming.compatible_jobs
<bound method Service.compatible_jobs of <class 'efootprint.builders.services.video_streaming.VideoStreaming'>>
# There’s only one so let’s use it !
from efootprint.builders.services.video_streaming import VideoStreamingJob

VideoStreamingJob.default_values()
{'resolution': 1080p (1920 x 1080),
 'video_duration': 1 hour,
 'refresh_rate': 30.0 / second,
 'data_stored': 0 megabyte}
print(VideoStreamingJob.list_values())
{'resolution': [480p (640 x 480), 720p (1280 x 720), 1080p (1920 x 1080), 1440p (2560 x 1440), 2K (2048 x 1080), 4K (3840 x 2160), 8K (7680 x 4320)]}
# Now it’s easy to add a 1 hour 1080p streaming job to our streaming service
streaming_job = VideoStreamingJob.from_defaults(
    "streaming job", service=video_streaming_service, resolution=SourceObject("1080p (1920 x 1080)"), 
    video_duration=SourceValue(20 * u.min))

# For optimization purposes calculations are only made when usage data has been entered but we can force
# some of them to see what the VideoStreamingJob does.
streaming_job.update_dynamic_bitrate()
streaming_job.update_data_transferred()
streaming_job.update_compute_needed()
streaming_job.update_ram_needed()

print(streaming_job)
VideoStreamingJob id-b70ef2-streaming-job

name: streaming job
data_stored: 0 megabyte
service: id-7fdf93-Video-streaming-service
video_duration: 20 minute
resolution: 1080p (1920 x 1080)
refresh_rate: 30.0 / second

calculated_attributes:
  request_duration: 0 second
  dynamic_bitrate: 0.78 megabyte / second
  data_transferred: 0.0 gigabyte
  compute_needed: 0.0 cpu_core
  ram_needed: 50 megabyte
  hourly_occurrences_per_usage_pattern: {}
  hourly_avg_occurrences_per_usage_pattern: {}
  hourly_data_transferred_per_usage_pattern: {}
  hourly_data_stored_per_usage_pattern: {}
  hourly_occurrences_across_usage_patterns: no value
  hourly_avg_occurrences_across_usage_patterns: no value
  hourly_data_transferred_across_usage_patterns: no value
  hourly_data_stored_across_usage_patterns: no value

Web application service

In the same vein, we can install a web application service on our server. e-footprint’s WebApplication service relies on the analysis of Boavizta’s ecobenchmark project.

from efootprint.builders.services.web_application import WebApplication, WebApplicationJob

web_app_service = WebApplication("Web app", server=server, technology=SourceObject("php-symfony"))
web_app_job = WebApplicationJob.from_defaults("fetching web view", service=web_app_service)
web_app_job.update_compute_needed()
web_app_job.update_ram_needed()

print(web_app_service)
print(web_app_job)
2025-02-19 11:15:46,733 - INFO - Computing calculated attributes for WebApplication Web app


WebApplication id-af1cc6-Web-app

name: Web app
server: id-7f0fb9-server
base_ram_consumption: no value
base_compute_consumption: no value
technology: php-symfony

WebApplicationJob id-613e61-fetching-web-view

name: fetching web view
data_transferred: 2.2 megabyte
data_stored: 100 kilobyte
service: id-af1cc6-Web-app
implementation_details: default

calculated_attributes:
  request_duration: 0 second
  compute_needed: 0.08 cpu_core
  ram_needed: 6.15 megabyte
  hourly_occurrences_per_usage_pattern: {}
  hourly_avg_occurrences_per_usage_pattern: {}
  hourly_data_transferred_per_usage_pattern: {}
  hourly_data_stored_per_usage_pattern: {}
  hourly_occurrences_across_usage_patterns: no value
  hourly_avg_occurrences_across_usage_patterns: no value
  hourly_data_transferred_across_usage_patterns: no value
  hourly_data_stored_across_usage_patterns: no value

Define the user journey

This is the modeling of the average daily usage of the streaming platform in France:

streaming_step = UsageJourneyStep(
    "20 min streaming",
    user_time_spent=SourceValue(20 * u.min, Sources.USER_DATA),
    jobs=[web_app_job, streaming_job])

video_upload_job = Job(
    "upload job", server=server, data_transferred=SourceValue(20 * u.MB, Sources.USER_DATA),
    data_stored=SourceValue(20 * u.MB, Sources.USER_DATA),
    request_duration=SourceValue(2 * u.s, Sources.HYPOTHESIS),
    compute_needed=SourceValue(1 * u.cpu_core, Sources.HYPOTHESIS),
    ram_needed=SourceValue(50 * u.MB, Sources.HYPOTHESIS))

upload_step = UsageJourneyStep(
    "1 min video capture then upload",
    user_time_spent=SourceValue(70 * u.s, Sources.USER_DATA),
    jobs=[web_app_job, video_upload_job])

The user journey is then simply a list of user journey steps:

user_journey = UsageJourney("Mean video consumption user journey", uj_steps=[streaming_step, upload_step])

Describe usage

An e-footprint usage pattern links a user journey to devices that run it, a network, a country, and the number of times the user journey gets executed hour by hour.

# Let’s build synthetic usage data by summing a linear growth with a sinusoidal fluctuation components, then adding daily variation
from datetime import datetime, timedelta

from efootprint.builders.time_builders import linear_growth_hourly_values

start_date = datetime.strptime("2025-01-01", "%Y-%m-%d")
timespan = 3 * u.year

linear_growth = linear_growth_hourly_values(timespan, start_value=5000, end_value=100000, start_date=start_date)
linear_growth.set_label("Hourly user journeys linear growth component")

linear_growth.plot()

png

from efootprint.builders.time_builders import sinusoidal_fluct_hourly_values

sinusoidal_fluct = sinusoidal_fluct_hourly_values(
    timespan, sin_fluct_amplitude=3000, sin_fluct_period_in_hours=3 * 30 * 24, start_date=start_date)

lin_growth_plus_sin_fluct = (linear_growth + sinusoidal_fluct).set_label("Hourly user journeys linear growth with sinusoidal fluctuations")

lin_growth_plus_sin_fluct.plot()

png

# Let’s add daily variations because people use the system less at night
from efootprint.builders.time_builders import daily_fluct_hourly_values

daily_fluct = daily_fluct_hourly_values(timespan, fluct_scale=0.8, hour_of_day_for_min_value=4, start_date=start_date)
daily_fluct.set_label("Daily volume fluctuation")

daily_fluct.plot(xlims=[start_date, start_date+timedelta(days=1)])

png

hourly_user_journey_starts = lin_growth_plus_sin_fluct * daily_fluct
hourly_user_journey_starts.set_label("Hourly number of user journey started")

hourly_user_journey_starts.plot(xlims=[start_date, start_date + timedelta(days=7)])

png

# Over 3 years the daily fluctuations color the area between daily min and max number of hourly user journeys
hourly_user_journey_starts.plot()

png

network = Network(
        "WIFI network",
        bandwidth_energy_intensity=SourceValue(0.05 * u("kWh/GB"), Sources.TRAFICOM_STUDY))

usage_pattern = UsagePattern(
    "Daily video streaming consumption",
    usage_journey=user_journey,
    devices=[Device.laptop()],
    network=network,
    country=Countries.FRANCE(),
    hourly_usage_journey_starts=hourly_user_journey_starts)

system = System("System", usage_patterns=[usage_pattern])
2025-02-19 11:15:47,993 - INFO - Starting computing System modeling
2025-02-19 11:15:47,994 - INFO - Computing calculated attributes for UsageJourney Mean video consumption user journey
2025-02-19 11:15:47,995 - INFO - Computing calculated attributes for UsagePattern Daily video streaming consumption
2025-02-19 11:15:48,008 - INFO - Computing calculated attributes for WebApplicationJob fetching web view
2025-02-19 11:15:48,018 - INFO - Computing calculated attributes for VideoStreamingJob streaming job
2025-02-19 11:15:48,025 - INFO - Computing calculated attributes for Job upload job
2025-02-19 11:15:48,031 - INFO - Computing calculated attributes for Server server
2025-02-19 11:15:48,057 - INFO - Computing calculated attributes for Network WIFI network
2025-02-19 11:15:48,064 - INFO - Computing calculated attributes for Storage SSD storage
2025-02-19 11:15:48,117 - INFO - Computing calculated attributes for System System
2025-02-19 11:15:48,125 - INFO - Finished computing System modeling

Results

Computed attributes

Now all calculated_attributes have been computed:

print(server)
Server id-7f0fb9-server

name: server
carbon_footprint_fabrication: 600 kilogram
power: 300 watt
lifespan: 6 year
fraction_of_usage_time: 1 dimensionless
server_type: autoscaling
idle_power: 50 watt
ram: 128 gigabyte
compute: 24 cpu_core
power_usage_effectiveness: 1.2 dimensionless
average_carbon_intensity: 100.0 gram / kilowatt_hour
server_utilization_rate: 0.9 dimensionless
base_ram_consumption: 300 megabyte
base_compute_consumption: 2 cpu_core
fixed_nb_of_instances: no value
storage: id-7715a6-SSD-storage

calculated_attributes:
  hour_by_hour_ram_need: 26298 values from 2024-12-31 23:00:00 to 2028-01-01 16:00:00 in GB:
    first 10 vals [50.09, 36.35, 25.77, 19.11, 16.86, 19.21, 26.03, 36.89, 51.08, 67.67],
    last 10 vals [1027.92, 1358.57, 1713.46, 2068.39, 2399.2, 2683.34, 2901.45, 3038.65, 3085.61, 3039.1]
  hour_by_hour_compute_need: 26298 values from 2024-12-31 23:00:00 to 2028-01-01 16:00:00 in cpu_core:
    first 10 vals [4.9, 3.56, 2.52, 1.87, 1.65, 1.88, 2.55, 3.61, 5.0, 6.62],
    last 10 vals [100.61, 132.97, 167.7, 202.44, 234.82, 262.63, 283.98, 297.41, 302.0, 297.45]
  occupied_ram_per_instance: 2300.0 megabyte
  occupied_compute_per_instance: 2 cpu_core
  available_ram_per_instance: 112.9 gigabyte
  available_compute_per_instance: 19.6 cpu_core
  raw_nb_of_instances: 26298 values from 2024-12-31 23:00:00 to 2028-01-01 16:00:00 in dimensionless:
    first 10 vals [0.44, 0.32, 0.23, 0.17, 0.15, 0.17, 0.23, 0.33, 0.45, 0.6],
    last 10 vals [9.1, 12.03, 15.18, 18.32, 21.25, 23.77, 25.7, 26.91, 27.33, 26.92]
  nb_of_instances: 26298 values from 2024-12-31 23:00:00 to 2028-01-01 16:00:00 in dimensionless:
    first 10 vals [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
    last 10 vals [10.0, 13.0, 16.0, 19.0, 22.0, 24.0, 26.0, 27.0, 28.0, 27.0]
  instances_fabrication_footprint: 26298 values from 2024-12-31 23:00:00 to 2028-01-01 16:00:00 in kg:
    first 10 vals [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
    last 10 vals [0.11, 0.15, 0.18, 0.22, 0.25, 0.27, 0.3, 0.31, 0.32, 0.31]
  instances_energy: 26298 values from 2024-12-31 23:00:00 to 2028-01-01 16:00:00 in kWh:
    first 10 vals [0.19, 0.16, 0.13, 0.11, 0.1, 0.11, 0.13, 0.16, 0.2, 0.24],
    last 10 vals [3.33, 4.39, 5.51, 6.64, 7.7, 8.57, 9.27, 9.69, 9.88, 9.7]
  energy_footprint: 26298 values from 2024-12-31 23:00:00 to 2028-01-01 16:00:00 in kg:
    first 10 vals [0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02],
    last 10 vals [0.33, 0.44, 0.55, 0.66, 0.77, 0.86, 0.93, 0.97, 0.99, 0.97]

System footprint overview

system.plot_footprints_by_category_and_object("System footprints.html")
print("placeholder")

Object relationships graph

Hover over a node to get the numerical values of its environmental and technical attributes. For simplifying the graph the Network and Hardware nodes are not shown.

from efootprint.utils.object_relationships_graphs import USAGE_PATTERN_VIEW_CLASSES_TO_IGNORE, INFRA_VIEW_CLASSES_TO_IGNORE

usage_pattern.object_relationship_graph_to_file("object_relationships_graph_up_view.html", width="800px", height="500px",
    classes_to_ignore=USAGE_PATTERN_VIEW_CLASSES_TO_IGNORE, notebook=True)
object_relationships_graph_up_view.html

usage_pattern.object_relationship_graph_to_file("object_relationships_graph_infra_view.html", width="800px", height="500px",
    classes_to_ignore=INFRA_VIEW_CLASSES_TO_IGNORE, notebook=True)
object_relationships_graph_infra_view.html

usage_pattern.object_relationship_graph_to_file("object_relationships_graph_all_objects.html", width="800px", height="500px",
    classes_to_ignore=[], notebook=True)
object_relationships_graph_all_objects.html

Calculus graph

Any e-footprint calculation can generate its calculation graph for full auditability. Hover on a calculus node to display its formula and numeric value.

usage_pattern.devices_fabrication_footprint.calculus_graph_to_file(
    "device_population_fab_footprint_calculus_graph.html", width="800px", height="500px", notebook=True)

Plotting an object’s hourly and cumulated CO2 emissions

server.energy_footprint.plot()

png

server.energy_footprint.plot(cumsum=True)

png

system.total_footprint.plot(cumsum=True)

png

Analysing the impact of a change

Numeric input change

Any input change automatically triggers the computation of calculations that depend on the input. For example, let’s say that the average data download consumption of the streaming step decreased because of a change in default video quality:

streaming_job.resolution = SourceObject("720p (1280 x 720)", Sources.USER_DATA)
system.plot_emission_diffs("bandwith reduction.png")

png

System structure change

Now let’s make a more complex change, like adding a conversation with a generative AI chatbot before streaming the video. We will use e-footprint’s GenAIModel object that fetches LLM data like number of parameters from EcoLogits.

# GenAI models need a GPU server
from efootprint.core.hardware.gpu_server import GPUServer
from efootprint.builders.services.generative_ai_ecologits import GenAIModel

llm_server = GPUServer.from_defaults("Inference GPU server", server_type=ServerTypes.serverless(), compute=SourceValue(16 * u.gpu),
                                    storage=Storage.ssd(storage_capacity=SourceValue(1 * u.TB)))
genai_model = GenAIModel.from_defaults(
    "Openai’s gpt-4o", server=llm_server, 
    provider=SourceObject("openai"), model_name=SourceObject("gpt-4o"))
2025-02-19 11:15:51,602 - INFO - Computing calculated attributes for GenAIModel Openai’s gpt-4o
from efootprint.builders.services.generative_ai_ecologits import GenAIJob

genai_job = GenAIJob("LLM API call", genai_model, output_token_count= SourceValue(1000 * u.dimensionless))
llm_chat_step = UsageJourneyStep(
    "Chat with LLM to select video", user_time_spent=SourceValue(1 * u.min, Sources.HYPOTHESIS),
    jobs=[genai_job])
# Adding the new step is simply an attribute update.
user_journey.uj_steps.append(llm_chat_step)
2025-02-19 11:15:51,680 - INFO - 13 recomputed objects: ['id-7dc9b0-Chat-with-LLM-to-select-video', 'id-7e04e6-Mean-video-consumption-user-journey', 'id-7a4d06-Daily-video-streaming-consumption', 'id-5718b6-LLM-API-call', 'id-613e61-fetching-web-view', 'id-b70ef2-streaming-job', 'id-078605-upload-job', 'id-5fcfa1-WIFI-network', 'id-928011-Inference-GPU-server', 'id-7f0fb9-server', 'id-d2958b-Default-SSD-storage', 'id-7715a6-SSD-storage', 'id-d0f3b2-System']
system.plot_emission_diffs("LLM chat addition.png")

png

We can see that server energy footprint has been multiplied by more than 1000 and the rest of the impact is quite negligible. Good to know to make informed decisions ! Of course the impact is very much dependent on assumptions. If the LLM server ran on low-carbon electricity for example:

llm_server.average_carbon_intensity = SourceValue(50 * u.g / u.kWh, Sources.HYPOTHESIS)
system.plot_emission_diffs("lower LLM inference carbon intensity.png")

png

Recap of all System changes

system.plot_emission_diffs("All system diffs.png", from_start=True)

png

Making simulations of changes in the future

We’ve seen that you can make changes in your modeling and analyse the differences, but most likely the changes you’re contemplating will happen at some point in the future. Let’s model a change in the future thanks to e-footprint’s ModelingUpdate object !

# Let’s first revert the system to its state before changes
# We can make optimized batch changes by using the ModelingUpdate object, that is also used to make simulations of changes in the future
from efootprint.abstract_modeling_classes.modeling_update import ModelingUpdate

ModelingUpdate([
    [user_journey.uj_steps, [streaming_step, upload_step]],
    [llm_server.average_carbon_intensity, SourceValue(300 * u.g / u.kWh, Sources.HYPOTHESIS)],
    [streaming_job.resolution, SourceObject("1080p (1920 x 1080)")]
])

system.plot_footprints_by_category_and_object("System footprints after reset.html")
2025-02-19 11:15:53,635 - INFO - Optimized modeling object computation chain from 16 to 12 modeling object calculated attributes recomputations.
2025-02-19 11:15:53,636 - INFO - 13 recomputed objects: ['id-7dc9b0-Chat-with-LLM-to-select-video', 'id-7e04e6-Mean-video-consumption-user-journey', 'id-7a4d06-Daily-video-streaming-consumption', 'id-613e61-fetching-web-view', 'id-b70ef2-streaming-job', 'id-078605-upload-job', 'id-5718b6-LLM-API-call', 'id-5fcfa1-WIFI-network', 'id-7f0fb9-server', 'id-928011-Inference-GPU-server', 'id-7715a6-SSD-storage', 'id-d2958b-Default-SSD-storage', 'id-d0f3b2-System']
2025-02-19 11:15:53,637 - INFO - Optimized update function chain from 118 to 102 calculations
# To create a simulation, which is a change in the future, simply set ModelingUpdate’s simulation_date parameter
simulation = ModelingUpdate([[user_journey.uj_steps, [streaming_step, upload_step, llm_chat_step]]],
                           simulation_date=start_date + timedelta(days=365))
2025-02-19 11:15:53,933 - INFO - 13 recomputed objects: ['id-7dc9b0-Chat-with-LLM-to-select-video', 'id-7e04e6-Mean-video-consumption-user-journey', 'id-7a4d06-Daily-video-streaming-consumption', 'id-5718b6-LLM-API-call', 'id-613e61-fetching-web-view', 'id-b70ef2-streaming-job', 'id-078605-upload-job', 'id-5fcfa1-WIFI-network', 'id-928011-Inference-GPU-server', 'id-7f0fb9-server', 'id-d2958b-Default-SSD-storage', 'id-7715a6-SSD-storage', 'id-d0f3b2-System']
system.total_footprint.plot(cumsum=True)

png

llm_server.energy_footprint.plot(cumsum=True)

png

# The system state is reset to baseline after the simulation.
# For example, our LLM server has no energy footprint since it is not used in the baseline modeling
llm_server.energy_footprint
no value
# To set simulation values, use ModelingUpdate’s set_updated_values method
simulation.set_updated_values()
llm_server.energy_footprint
17538 values from 2025-12-31 23:00:00 to 2028-01-01 16:00:00 in kg:
    first 10 vals [494.45, 358.02, 253.3, 187.45, 165.02, 187.57, 253.61, 358.69, 495.68, 655.28],
    last 10 vals [1346.61, 1779.79, 2244.7, 2709.68, 3143.05, 3515.28, 3801.01, 3980.76, 4042.27, 3981.35]
# Conversely, pre-update values are reset using ModelingUpdate’s reset_values method
simulation.reset_values()
llm_server.energy_footprint
no value